Irreversible inhibition of biotin transport in yeast by biotinyl-p-nitrophenyl ester.
نویسندگان
چکیده
Biotinyl-p-nitrophenyl ester (BNP), an active-ester derivative of biotin, irreversibly inactivates biotin transport in the yeast Saccharomyces cerevisiae. Transport inactivation is progressive with time and occurs at concentrations of the ester as low as 10(-7) M. In the presence of sodium azide, a reagent known to block biotin accumulation in yeast, the derivative is still effective. The specificity of inactivation by the ester is revealed by the following findings: (a) Biotinyl-p-nitroanilide and acetyl-p-nitrophenyl ester do not affect biotin transport; (b) the nitrophenyl ester does not affect the transport of lysine and aspartic acid, or that of L-sorbose; (c) inactivation of biotin transport by the ester is partially prevented when the cells are incubated with it in the presence of relatively high concentrations of biotin.
منابع مشابه
Ligand exchange between proteins. Exchange of biotin and biotin derivatives between avidin and streptavidin.
We have studied the structural elements that affect ligand exchange between the two high affinity biotin-binding proteins, egg white avidin and its bacterial analogue, streptavidin. For this purpose, we have developed a simple assay based on the antipodal behavior of the two proteins toward hydrolysis of biotinyl p-nitrophenyl ester (BNP). The assay provided the experimental basis for these stu...
متن کاملAcetyl coenzyme A carboxylase. IV. Biotinyl prosthetic group-independent malonyl coenzyme A decarboxylation and carbosyl transfer: generalization to other biotin enzymes.
Liver acetyl-CoA carboxylase, a biotin-enzyme which catalyzes the ATP-dependent carboxylation of acetyl-CoA (acceptor) to form malonyl-CoA (carboxylated acceptor), decarboxylates malonyl-CoA by a biotin-dependent, as well as a biotin-independent mechanism. Neither ADP, Pi, nor divalent metal ion are required for either of these abortive decarboxylations. The biotin-dependent reaction is blocked...
متن کاملAcetyl Coenzyme A Carboxylase IV. BIOTINYL PROSTHETIC GROUP-INDEPENDENT MALONYL COENZYME A DECARBOXYLATION AND CARBOXYL TRANSFER: GENERALIZATION TO OTHER BIOTIN ENZYMES*
Liver acetyl-CoA carboxylase, a biotin-enzyme which catalyzes the ATP-dependent carboxylation of acetyl-CoA (acceptor) to form malonyl-CoA (carboxylated acceptor), decarboxylates malonyl-CoA by a biotin-dependent, as well as a biotin-independent mechanism. Neither ADP, Pi, nor divalent metal ion are required for either of these abortive decarboxylations. The biotin-dependent reaction is blocked...
متن کاملBiotinyl-methyl 4-(amidomethyl)benzoate is a competitive inhibitor of human biotinidase.
Posttranslational modification of histones by biotinylation can be catalyzed by both biotinidase (BTD) and holocarboxylase synthetase. Biotinylation of histones is an important epigenetic mechanism to regulate gene expression, DNA repair, and chromatin remodeling. The role of BTD in histone biotinylation is somewhat ambiguous, given that BTD also catalyzes removal of the biotin tag from histone...
متن کاملSaccharomyces Cerevisiae as a Biocatalyst for Different Carbonyl Group under Green Condition
In this researchsaccharomyces cerevisiae (baker’s yeast) was used as a cheap, readily accessible, selective, efficient, and green bio-catalyst in a chemo selective reduction of carbonyl group to hydroxyl group. In this green procedure three substrates e.g. (3-(3-nitrophenyl)aziridin-2-yl)-1-phenyl-methanone, pyruvate ester, and 2-acetyl-γ-butyrolactone were r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 68 10 شماره
صفحات -
تاریخ انتشار 1971